35 research outputs found

    Rooted branching bisimulation as a congruence for probabilistic transition systems

    Get PDF
    Ponencia presentada en el 13 International Workshop on Quantitative Aspects of Programming Languages and Systems. London, United Kingdom, April 11-12, 2015.We propose a probabilistic transition system specification format, referred to as probabilistic RBB safe, for which rooted branching bisimulation is a congruence. The congruence theorem is based on the approach of Fokkink for the qualitative case. For this to work, the theory of transition system specifications in the setting of labeled transition systems needs to be extended to deal with probability distributions, both syntactically and semantically. We provide a scheduler-free characterization of probabilistic branching bisimulation as adapted from work of Andova et al. for the alternating model. Counter examples are given to justify the various conditions required by the format.Fil: Lee, Matías David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: De Vink, Erik P. Eindhoven University of Technology; The Netherlands.Fil: De Vink, Erik P. Centrum Wiskunde & Informatica; The Netherlands.Ciencias de la Computació

    Amphiregulin contributes to the transformed phenotype of human hepatocellular carcinoma cells

    Get PDF
    Hepatocellular carcinoma is a major cause of cancer-related deaths. Current treatments are not effective, and the identification of relevant pathways and novel therapeutic targets are much needed. Increasing evidences point to the activation of the epidermal growth factor receptor (EGFR) as an important mechanism in the development of hepatocarcinoma. We previously described that amphiregulin (AR), a ligand of the EGFR, is not expressed in healthy liver but is up-regulated during chronic liver injury, the background on which most liver tumors develop. Now, we have studied the expression and role of AR in human hepatocarcinoma. AR expression and function was studied in human liver tumors and cell lines. AR is expressed in human hepatocellular carcinoma tissues and cell lines and behaves as a mitogenic and antiapoptotic growth factor for hepatocarcinoma cells. We provide several lines of evidence, including AR silencing by small interfering RNAs and inhibition of amphiregulin by neutralizing antibodies, showing the existence of an AR-mediated autocrine loop that contributes to the transformed phenotype. Indeed, interference with endogenous AR production resulted in reduced constitutive EGFR signaling, inhibition of cell proliferation, anchorage-independent growth, and enhanced apoptosis. Moreover, knockdown of AR potentiated transforming growth factor-beta and doxorubicin-induced apoptosis. Conversely, overexpression of AR in SK-Hep1 cells enhanced their proliferation rate, anchorage-independent growth, drug resistance, and in vivo tumorigenic potential. These observations suggest that AR is involved in the acquisition of neoplastic traits in the liver and thus constitutes a novel therapeutic target in human hepatocarcinoma

    Novel role for amphiregulin in protection from liver injury

    Get PDF
    Clinically, the Fas and Fas ligand system plays a central role in the development of hepatocyte apoptosis, a process contributing to a broad spectrum of liver diseases. Therefore, the development of therapies aimed at the inhibition of hepatocyte apoptosis is a major issue. Activation of the epidermal growth factor receptor has been shown to convey survival signals to the hepatocyte. To learn about the endogenous response of epidermal growth factor receptor ligands during Fas-mediated liver injury we investigated the expression of epidermal growth factor, transforming growth factor alpha, heparin-binding epidermal growth factor-like growth factor, betacellulin, epiregulin, and amphiregulin in the liver of mice challenged with Fas-agonist antibody. Amphiregulin expression, barely detectable in healthy liver, was significantly up-regulated. Amphiregulin administration abrogated Fas-mediated liver injury in mice and showed direct anti-apoptotic effects in primary hepatocytes. Amphiregulin activated the Akt and signal transducer and activator of transcription-3 survival pathways, and up-regulated Bcl-xL expression. Amphiregulin knock-out mice showed signs of chronic liver damage in the absence of any noxious treatment, and died faster than wild type mice in response to lethal doses of Fas-agonist antibody. In contrast, these mice were more resistant against sublethal liver damage, supporting the hypothesis that chronic liver injury can precondition hepatocytes inducing resistance to subsequent cell death. These results show that amphiregulin is a protective factor induced in response to liver damage and that it may be therapeutic in liver diseases

    Amphiregulin: An early trigger of liver regeneration in mice

    Get PDF
    BACKGROUND AND AIMS: Liver regeneration is a unique response directed to restore liver mass after resection or injury. The survival and proliferative signals triggered during this process are conveyed by a complex network of cytokines and growth factors acting in an orderly manner. Activation of the epidermal growth factor receptor is thought to play an important role in liver regeneration. Amphiregulin is a member of the epidermal growth factor family whose expression is not detectable in healthy liver. We have investigated the expression of amphiregulin in liver injury and its role during liver regeneration after partial hepatectomy. METHODS: Amphiregulin gene expression was examined in healthy and cirrhotic human and rat liver, in rodent liver regeneration after partial hepatectomy, and in primary hepatocytes. The proliferative effects and intracellular signaling of amphiregulin were studied in isolated hepatocytes. The in vivo role of amphiregulin in liver regeneration after partial hepatectomy was analyzed in amphiregulin-null mice. RESULTS: Amphiregulin gene expression is detected in chronically injured human and rat liver and is rapidly induced after partial hepatectomy in rodents. Amphiregulin expression is induced in isolated hepatocytes by interleukin 1beta and prostaglandin E(2), but not by hepatocyte growth factor, interleukin 6, or tumor necrosis factor alpha. We show that amphiregulin behaves as a primary mitogen for isolated hepatocytes, acting through the epidermal growth factor receptor. Finally, amphiregulin-null mice display impaired proliferative responses after partial liver resection. CONCLUSIONS: Our findings indicate that amphiregulin is an early-response growth factor that may contribute to the initial phases of liver regeneration

    Novel Role for Amphiregulin in Protection from Liver Injury

    Get PDF
    Clinically, the Fas and Fas ligand system plays a central role in the development of hepatocyte apoptosis, a process contributing to a broad spectrum of liver diseases. Therefore, the development of therapies aimed at the inhibition of hepatocyte apoptosis is a major issue. Activation of the epidermal growth factor receptor has been shown to convey survival signals to the hepatocyte. To learn about the endogenous response of epidermal growth factor receptor ligands during Fas-mediated liver injury we investigated the expression of epidermal growth factor, transforming growth factor alpha, heparin-binding epidermal growth factor-like growth factor, betacellulin, epiregulin, and amphiregulin in the liver of mice challenged with Fas-agonist antibody. Amphiregulin expression, barely detectable in healthy liver, was significantly up-regulated. Amphiregulin administration abrogated Fas-mediated liver injury in mice and showed direct anti-apoptotic effects in primary hepatocytes. Amphiregulin activated the Akt and signal transducer and activator of transcription-3 survival pathways, and up-regulated Bcl-xL expression. Amphiregulin knock-out mice showed signs of chronic liver damage in the absence of any noxious treatment, and died faster than wild type mice in response to lethal doses of Fas-agonist antibody. In contrast, these mice were more resistant against sublethal liver damage, supporting the hypothesis that chronic liver injury can precondition hepatocytes inducing resistance to subsequent cell death. These results show that amphiregulin is a protective factor induced in response to liver damage and that it may be therapeutic in liver diseases

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger Observatory

    Get PDF
    corecore